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This is a very exciting period for
combustion modeling

- Computer power is growing rapidly
Combustion models on supercomputers
Single CPU capabilities are growing

Multi-dimensional combustion codes are
including more detail in more submodels

- Chemical kinetic mechanisms are being
published for fuels of much greater
complexity and size than ever



Practical combustion problems are complex

- Engines are 3D, complicated

- 3D CFD calculations are expensive

. Chemical kinetics calculations are expensive

- Radiation transport calculations are expensive

- Liquid spray, multiphase problems are expensive
- Particulate, soot calculations are expensive

- EXxpensive means computer time, computer size,
model development time

- Usually significant model simplifications are made



Combustion Modeling Challenges

Many past models have avoided a full 3D, multiphase,
detailed kinetics, radiation transport, complex
geometry, treatment

We have emphasized detailed kinetics of fuel
reactions, with OD (ignition) or 1D (laminar flame)
geometry.

Clever formulation of these OD and 1D problems has
answered some very challenging engine questions

We have extended chemical models to mechanisms
many times more complex than in the past




Causes and implications of flammability limits

Law and Egolfopoulos for atmospheric pressure flames
Basic concept is competition between 2 reactions

H + O,
H+ O, + M

O + OH R1
HO, + M R2

Rates of these reactions have different temperature and
pressure dependence, and for atmospheric pressure,

lean limit occurs at adiabatic flame temperature where
R2 becomes faster than R1

Currently a topic of considerable attention at high pressure



Chemical classes being modeled in combustion
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Hydrocarbons

Methane, ethane, paraffins through decane

Natural gas

Alcohols (e.g., methanol, ethanol, propanol

Other oxygenates ( e.g., dimethyl ether, MTBE, aldehydes )
Automotive primary reference fuels for octane and cetane ratings
Aromatics (e.g., benzene, toluene, xylenes, naphthalene )

Others

Oxides of nitrogen and sulfur (NOx, SOx)
Metals (Aluminum, Sodium, Potassium, Lead)
Chlorinated, brominated, fluorinated species
Silane

Air toxic species

Chemical warfare nerve agents




Kinetic modeling covers a wide range of systems

Types of systems studied

Flames

Shock tubes

Detonations

Pulse combustion

Flow reactors

Stirred reactors
Supercritical water oxidation
Engine knock and octane sensitivity
Flame extinction

Diesel engine combustion
Combustion of metals

CW agent chemistry
Catalytic combustion
Material synthesis

many others . . ..

Waste incineration

Kerogen evolution
Oxidative coupling

Heat transfer to surfaces
Static reactors

Ignition

Soot formation

Pollutant emissions

Cetane number

Liquid fuel sprays

HE & propellant combustion
Gasoline, diesel, aviation fuels
CVD and coatings

Chemical process control



Laminar flames in quenching problems

Bulk quenching in direct injection stratified charge
(DISC) engine

Bulk quenching due to volume expansion in lean
mixtures

Flame quenching at lean and rich flammability limits

Flame quenching on cold walls and unburned
hydrocarbon emissions from internal combustion
engines

Flame inhibition

Soot production and reduction



Combustion chemistry modeling needs

o Chemistry models for transportation fuels

o Extend chemistry models for these fuels by adding
complexity and realism with new chemical
components

o Our chemistry modeling needs are somewhat
incremental, and we must validate each new
component species as it is added to the overall
model



Chemical Kinetic Model

Contains a large database of:

* Thermodynamic properties of species
e Reaction rate parameters

Size of mechanism grows with molecular size:

Fuel: Ho CH4 C3Hs CeH14
(Propane) (Hexane)

Number of species: 7 30 100 450

Number of reactions: 25 200 400 1500

C16H34
(Cetane)

1200

7000
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Most fuels of interest consist of complex
mixtures of many chemical species

- Natural gas
- Gasoline

- Diesel

- Jet fuel

- Rocket fuel

- These fuels contain many components
that do not have detailed mechanisms

Gasoline, diesel and jet fuel have hundreds
of components (even natural gas)

11
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Gasoline has many components
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1996 Gasoline
9 brands

c 40 J Premium and regular |[
O ' Sales weighted :
"§ : Kirchstetter et al. 1999 |[
< 30 1 N
q) -
O -
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—
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alkene
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unidentified

branched alkane



Diesel Composition
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Gasoline
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Natural gas is the easiest case

For natural gas, simplified fuels are generally
accepted (e.g. 95% methane, 4 % ethane, 1

% n-butane)

For liquid fuels, choosing a substitute is more
difficult:

Gasoline
Diesel
Jet fuel

18



Development of a Simplified Fuel
Mechanism for Simulations

Classes of compounds in gasoline and diesel fuel:

_ iso-paraffin _
n-paraffin olefin
CHs
H, Ho Ha H Hy
c O PN Cx N
NN HoC ch CHs RN
H, H, | H H,
CHs
CHj
H,C—CH, H
A P v ;
H,C CH; HC o) C CH 0 C
\ / | N N N N N
H,C—CH H;C CH O CH OH
2 2 HC% /CH H
C 2
H CHa CHs
cyclo-alkane

aromatic oxygenate

19



Approaches to Surrogate fuels

Have one or more fuel components to
represent each chemical class of
components

Surrogate fuel should be able to predict
desired combustion and physical
properties, e.g.:

Ignition properties

Flame speeds

Sooting tendency

Others ?7?
Produce reduced kinetic model as needed

20



Need to add new species for specific
applications and conditions

Larger hydrocarbon molecules, with their
significantly larger reaction mechanisms

New species for liquid fuels, use existing techniques

Mechanisms for individual species must each be
validated thoroughly (Comprehensive mechanism)

Purely kinetic tests, including shock tubes, flow
reactors, flame speeds, stirred reactors

Applied tests in application environments

Relevant pressure and temperature ranges
identified for each type of application

21



Prior simplified versions of diesel/gasoline

o h-heptane: frequently used to represent
diesel fuel. Has similar cetane no. (55) to
diesel fuel

o h-heptane/iso-octane: primary
reference fuels for gasoline. Some success
as a substitute for gasoline under HCCI
conditions and engine knock, some
problems too

22



Work In progress

Teams of kinetics modeling researchers are working to
produce these surrogate fuel models

Recent example:
Violi et al., CST 174, 399 (2002), surrogates for JP-8

a. iso-octane, MCH, m-xylene, dodecane, tetralin and
tetradecane

b. iso-octane, MCH, toluene, decane, dodecane,
tetradecane

Used semi-detailed mechanisms from Ranzi et al.
Included boiling point and other physical properties

23



n-Heptane mechanism validation

O

O

O

O

O

Shock tube ignition

Stirred reactor

Flow reactor

Rapid compression machine

Laminar flame

24



Shock tube ignition, higher
pressure, lower temperatures

Ciezki and Adomeit - 13.5 bar phi=1.0

2.5

1.5 |
@ **
g » * l‘ ® experiments
L 0s - l”. > S M Chemkin
o y | ¢
o »

-0.5 '.‘

%
_1.5 I I I I
0.7 0.9 1.1 1.3 1.5
1000/Temp

660K - 1300K, ® = 0.5, 1.0, 2.0 P =6, 13.5, 40 bar
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Reference fuels for cetane number
In Diesel combustion

C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
n-cetane

c C C C
C-C-C-C-C-C-C-C-C
c C C

heptamethylnonane

CHS3

a-methyl naphthalene
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We are ready to provide additional complexity
to our simplified diesel fuel

We have used n-heptane due to its ignition
properties and cetane number

n-heptane has no aromatic characteristics
Aromatics ignite more slowly than n-heptane

To simulate ignition timing of diesel fuel with
aromatic components, we will have to include a
component more reactive than n-heptane

Solution is to combine aromatics and dodecane
or hexadecane

27



Diesel surrogate fuel in the future

Made up of straight-chain alkanes, branched-chain alkanes,

cyclic alkanes, simple aromatics, alkylated aromatics,

polycyclic aromatics and others

Example test: Surrogate diesel:
n-alkane: n-hexadecane, n-dodecane or n-decane
branched chain component: iso-octane or branched heptane
cyclic alkane component: cyclohexane or methyl cyclohexane

aromatic component: toluene or mixture of xylenes

28



In some classes, we have many examples
of fuels with reaction mechanisms

o n-paraffins
CH,4 (methane) through nC;¢H3, (n-hexadecane)

o iso-paraffins

all isomers through octanes, selected larger iso-
paraffins

o Large variety of olefins through C8 and
selected larger species

29



We can have mechanisms for many
oxygenated components

OH

Methanol, ethanol ——oH ‘ ~_ .~
dimethyl ether, o0 °
dlmethoxymethane

o Methyl butanoate \/\“/ ~
(surrogate for
biodiesel)
o TPGME (tripropylene
gIY}coI monomethy! \(\ \r\
ether)
o DBM (di-butyl s
maleate) NN \H/

o DGE ?diethylene
glycol diethyl ether)

Under development

SN N NN

O O

30



We now have more components to
represent classes of hydrocarbons

o toluene (aromatics) C;

o methylcyclohexane
(cycloalkanes)

o diisobutylene

(alkenes) W

31



New components

o diisobutylene
low temperature
chemistry

o 0-Xxylene,
m-xylene,
p-Xylene

o a-methyl OO
naphthalene



A five component surrogate to
represent gasoline

o n-heptane (straight \/\/\/

chain alkanes)

o iso-octane (branched )\/%
alkanes)

:/\/

o 1-pentene (alkenes)
o toluene (aromatics)

o methylcyclohexane
(cycloalkanes)

33



Surrogate mixtures for gasoline based
on composition and octane number

» Typical gasoline: RON =90.8, MON = 83.4

% Composition  Mixture 1

Miscellaneous n-Alkanes

Alkenes iso-Octane 60

n-Heptane 8

Toluene 20

Methyl cyclohexane 8

1-Pentene 4

Iso- RON (linear mixing) 93.7

alkanes MON (linear mixing) 90.6

RON (blend*) 99.2

Cycloalkenes MON (blend*) 94.5

Cycloalkanes

Based on http://www.atsdr.cdc.govitoxprofiles/tp72-c3.j



Surrogate fuel compositions examined:

o Mixture 1: Five components to represent the different
classes of compound in gasoline at the typical level.

o Mixture 2: Match the octane number of gasoline based
on blended octane numbers.

o Mixture 3: Increase the low temperature chemistry by
adding more n-heptane

% molar composition | Mixture 1 | Mixture 2 | Mixture 3
iso-Octane 60 40 40
n-Heptane 8 10 20
Toluene 20 10 10
Methyl cyclohexane 8 40 30
1-Pentene 4 0 0
RON (linear) 93.7 81.7 83.7
MON (linear) 90.6 79.3 79.8
RON (blend) 99.2 94 87.6
MON (blend) 94.5 84.8 82
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Effect of equivalence ratio on timing
for start of combustion

Y. 3580
& 1200 rpm, 100kPa, T(BDC): 8
= 3578 1 Experimental=409K, Model=407- 408K e
°\° _ ’
% S _ 357.6 °
Q| g - 357.4 1
O | 2T 3572 -
C j =
.8 = o 357.0 - e Dec and Sjoberg, Gasoline
= S 356.8 .. e —= - Model: Mixture-1
O) 356.6 - g o - = Model: Mixture-Z
= —=— Model: Mixture-3
356.4 . . . . : : :
004 008 012 016 02 024 028 0.32

Equivalence Ratio
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Add new fuel components as needed to
model important features of the overall fuel

o New sources of diesel fuels has led to
much greater levels of cycloalkanes, for
which detailed mechanisms did not exist

o Methyl cyclohexane chosen as
representative sample for this class

o Additional experiments needed for
validation of this new component

37



Cycloalkanes: methyl cyclohexane

e Cycloalkanes are becoming of much
interest due to oil sands

methylcyclohexane
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Canada’s oil sands
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Canadian oil sands

Second only to Saudi Arabia in proven oil reserves
- Saudi Arabia 262 billion barrels
- Canada oil sands 175 billion barrels
- Arctic National Wildlife Refuge 10 billion barrels (est)
Currently largely strip mined
Production is a serious source of greenhouse gases
- 2 tons of sand produce one barrel of oil
- production of one barrel of oil =
daily emissions from 4 cars
- huge usage of natural gas for extraction

40



Athabasca oil sands

41



Strip mining oil sands,

g

Chronicle f ran I ard

using 400 ton capacity trucks
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WHAT ARE OIL SANDS?

Fifty-million years ago, huge deposits of oil
were pushed up through the Earth in what is
now Canada. Bacteria consumed

much of the lighter hydro- l
carbons, leaving a thick, ¥

sticky mixture of heavy

petroleum called
bitumen mixed with } -1_. ‘)

water and sandstone. The
deposits cover an area the J

}-.
size of Florida. L
Sand

Water Bitumen

GLOBAL CRUDE OIL
RESERVES

Estimates of “proven” oil reserves — known
existing deposits that can be profitably

extracted — in billions of barrels.

180 97 percent of Canada's
reserves are in the form
of oil sands

113
94 g9
90 78
6D
FF
L oD
3 8% %

22

N -

$3%3% 3 Z <
$35%3 5%
> 2 % < 5 °
= e %{5 . L
o = - =
» bl

Source: Suncor Energy Inc., Petroleum Communicalion
Foundation, O and Gas Journal

The Denver Posd
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Diesel fuels derived from oil sands present
combustion challenges that require research

Derived diesel fuel is rich in cyclic alkanes
- e.g., methyl cyclohexane

Most of these are rather large, complex cyclic alkanes
Very little scientific research has been done on any cyclic alkanes

Preliminary practical experience suggests that these species are
important in determining ignition and soot production in diesels

44



A |nterest in cycloalkanes has increased
due to oil sands

So

9
-G
oYy

Ca19Ha98NgO4SgV
Mol. Wt.: 5989.94

Asphaltene molecule
typical of oil sands




Benefits of Hydrotreating and
Aromatic Saturation

—00

+H,S
‘Biphenyl, b.p. 256 °C

Sate
+3H,

+
Dibenzothiophene, b.p. 332 °C 3H,
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A mechanism for diisobutylene to further

represent alkenes in gasoline (17 new
species, 83 new reactions)

o Diisobutylene molecular structure is
similar to iso-octane

Iso-octane:

Y

(2,2,4-trimethyl-pentane)

Diisobutylene 1s comprised of two isomers:

Y YT

2,4,4-trimethyl-1-pentene 2.,4,4-trimethy1—2—pentene
(jc8h16) (ic8h16)

47



Biodiesel fuels

Alternative fuel from vegetable oils and animal fat

Methyl esters with = 16-18 Carbon atoms

Low sulfur allows use of catalysts for NO, removal
10% oxygen content in fuel lowers soot emissions
Liquid fuel at room temperature

Renewable diesel fuel
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Note the methyl ester group at the end of
each long hydrocarbon chain

8]

methyl palmitate /\/\M/\/\/\J\o/

]

methyl stearate /W\/\/\/\/\/\J\o/

8]

methyl oleate  # o

methyl linoleate

A
O/
(0]

methyl linolenate mwo/

figure from C. Mueller, Sandia



Methyl Butanoate
Bond Strengths (kcal/mole)

8.5 931 929

1012
1011 \ \ / ’ 100.3
/
] |
C C -

047,

Hi H \H 900 N
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Methyl butanoate, a biodiesel surrogate fuel

MB has the essential structure characteristic of biodiesel fuels
MB has basic chemical features of larger methyl esters
Does not have the higher molecular weight of biodiesel fuels

Molecule is long enough to display alkylperoxy isomerization kinetics
characteristic of biodiesel fuels

Computationally much easier to model than true biodiesel fuels
Optimal vehicle to learn about modeling methyl ester kinetics

Paper in current symposium examines the strengths and limits of
methyl butanoate as a biodiesel surrogate
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Fischer-Tropsch fuel can be treated as a mixture
of n-paraffin and iso-paraffin components

e Recent advances in catalysts for Fischer-
Tropsch production from CO and H, help
economics

e Extremely clean fuel, with virtually no
sulfur or other atoms

e We have kinetic models for many n-
paraffin and iso-paraffin molecules
- isomers of heptane on LLNL webpage
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Next steps in model development

o Choose model components for specific
applications from library of fuel components

o Demonstrate simulation properties of the
substute fuel under relevant conditions
idealized conditions (e.g., shock ignition, flames)
application-specific conditions
o Many essential tasks are becoming
automated, incl. mechanism generation
and reduction, with enormous savings in
development time
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Next steps - 2

o Mechanism reduction to intermediate
levels useful for efficient modeling
calculations

o Mechanism reduction to very small models
useful for CFD applications

o CARM or other techniques, automatic
operation is highly desirable

o Note that reduction can be application-
dependent and environment-dependent
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HRR vs. Temperature and Progress Variable
high cetane (low octane) fuel, P = 100 bar
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fuel)

S
o
o

HRR (MW /9T
N
S

HRR vs. Temperature and Progress Variable
low cetane (high octane) fuel, P = 100 bar
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The End
R H ST I UVELT-,




